Abstract

Using density functional theory, we explored the termination process of Si (100)-2 × 1 reconstructed surface mechanistically through the dehydrogenation of small molecules, considering methyl amine and methanol as terminating reagents. At first, both the terminating reagents form two types of adduct through adsorption on the Si (100)-2 × 1 surface, one in chemisorption mode and the other via physisorption, from which the dehydrogenation process is initiated. By analyzing the activation barriers, it was observed that termination of the Si-surface through the dehydrogenation is kinetically almost equally feasible using either reagent. We further examined in detail the mechanism for each termination process by analyzing geometrical parameters and natural population analysis charges. From bonding evaluation, it is evident that hydrogen abstraction from adsorbates on the Si-surface is asymmetric in nature, where one hydrogen is abstracted as hydride by the electrophilic surface Si and the other hydrogen is abstracted as proton by the neucleophilic surface Si. Moreover, it was also observed that hydride transfer from adsorbate to the Si-surface occurs first followed by proton transfer. Overall, our theoretical interpretation provides a mechanistic understanding of the Si (100)-2 × 1 reconstructed surface termination by amine and alcohol that will further motivate researchers to design different types of decorated semiconductor devices. Graphical Abstract Surface termination process of Si(100)-2×1 through formation of non-polar Si-H bonds via dehydrogenation of methylamine and methanol as terminating reagents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.