Abstract

The interaction of localized light with matter generates optical electrostriction within dielectric fluids, leading to a discernible change in the refractive index of the medium according to the excitation’s light profile. This optical force holds critical significance in optical manipulation and plays a fundamental role in numerous photonic applications. In this study, we demonstrate the applicability of the pump-probe, photo-induced lensing (PIL) method to investigate optical electrostriction in various dielectric liquids. Notably, the thermal and nonlinear effects are observed to be temporally decoupled from the electrostriction effects, facilitating isolated observation of the latter. Our findings provide a comprehensive explanation of optical forces in the context of the recently introduced microscopic Ampère electromagnetic formalism, which is grounded in the dipolar approximation of electromagnetic sources within matter and characterizes electrostriction as an electromagnetic-induced stress within the medium. Here, the optical force density is re-obtained through a new Lagrangian approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call