Abstract

The ordinary mode instability can be driven by drifting bi-Maxwellian plasma particle distributions with and without temperature anisotropy. Here, the linear instability analysis is generalized for realistic settings, when the plasma streams are magnetized and hot enough. The new parametrization proposed in this study enables a better understanding of the interplay of counterstreaming and temperature anisotropy, providing the derivation of new regimes of the ordinary mode instability. Accurate analytical forms are derived for the instability conditions for general values of the temperature anisotropy, the streaming velocity, and the parallel plasma beta. To keep the analysis straightforward, the role of ions is minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.