Abstract
Manipulations of encoding strength and stimulus class can lead to a simultaneous increase in hits and decrease in false alarms for a given condition in a yes/no recognition memory test. Based on signal detection theory, the strengthbased ‘mirror effect’ is thought to involve a shift in response criterion/threshold (Type I), whereas the stimulus class effect derives from a specific ordering of the memory strength signals for presented items (Type II). We implemented both suggested mechanisms in a simple, competitive feed-forward neural network model with a learning rule related to Bayesian inference. In a single-process approach to recognition, the underlying decision axis as well as the response criteria/thresholds were derived from network activation. Initial results replicated findings in the literature and are a first step towards a more neurally explicit model of mirror effects in recognition memory tests.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.