Abstract
In order to collaborate with people in the real world, cognitive systems must be able to represent and reason about spatial regions in human environments. Consider the command "go to the front of the classroom". The spatial region mentioned (the front of the classroom) is not perceivable using geometry alone. Instead it is defined by its functional use, implied by nearby objects and their configuration. In this paper, we define such areas as context-dependent spatial regions and present a cognitive system able to learn them by combining qualitative spatial representations, semantic labels, and analogy. The system is capable of generating a collection of qualitative spatial representations describing the configuration of the entities it perceives in the world. It can then be taught context-dependent spatial regions using anchor pointsdefined on these representations. From this we then demonstrate how an existing computational model of analogy can be used to detect context-dependent spatial regions in previously unseen rooms. To evaluate this process we compare detected regions to annotations made on maps of real rooms by human volunteers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.