Abstract

Author(s): Bhattacharya, Tanmoy; Gupta, Rajan; Martin, Matthew R; Shirman, Yuri; Csaki, Csaba; Terning, John | Abstract: We describe an implementation of a deconstructed gauge theory with charged fermions defined on an interval in five dimensional AdS space. The four dimensional slices are Minkowski, and the end slices support four dimensional chiral zero modes. In such a theory, the energy scales warp down as we move along the fifth dimension. If we augment this theory with localized neutral 4-dimensional Majorana fermions on the low energy end, and implement a Higgs mechanism there, we can arrange the theory such that the lightest gauge boson mode and the chiral mode on the wall at the high energy end are parametrically lighter than all the other states in the theory. If this semiclassical construction does not run into problems at the quantum level, this may provide an explicit construction of a chiral gauge theory. Instanton effects are expected to make the gauge boson heavy only if the resulting effective theory is anomalous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.