Abstract
The rapid advent of Large Language Models (LLMs), such as ChatGPT and Claude, is revolutionizing various fields, from education and healthcare to the engineering of reliable software systems. These LLMs operate through "prompts," which are natural language inputs that users employ to query and leverage the models' capabilities. Given the novelty of LLMs, the understanding of how to effectively use prompts remains largely anecdotal, based on isolated use cases. This fragmented approach limits the reliability and utility of LLMs, especially when they are applied in mission-critical software environments. To harness the full potential of LLMs in such crucial contexts, therefore, we need a systematic, disciplined approach to "prompt engineering" that guides interactions with and evaluations of these LLMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.