Abstract

This paper investigates the relationship between buffer size and long-term average TCP performance in dense wavelength division multiplexing (DWDM) networks. By investigating TCP NewReno, we demonstrate that buffer requirements are related to the number of wavelength channels at a bottleneck. With sufficient wavelengths, high throughput can be obtained with a buffer of one packet per channel; furthermore, there may be situations where an entirely bufferless optical packet switching (OPS) will become feasible. For this study, we develop new evaluation tools. First, we propose a method based on a two-part analytical model, with a new ¿open loop¿ component which approximates packet discarding in a bottleneck DWDM switch, and a ¿closed loop¿ fixed-point which reflects the impact of TCP. This analytical method provides accurate and scalable approximations of throughput and packet loss rate that can be used as part of a tool for DWDM network and switch design. Second, we propose an extrapolation technique to allow simulation of TCP over long ultra-high bit rate links, avoiding the intractable processing and memory requirements of direct simulation. This extrapolation technique enables us to validate the analytical model for arbitrarily high bit rate scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.