Abstract

Australia has abundant volumes of forest residues that are a potential feedstock for supplying biomass as a renewable carbon carrier to the market. However, there remains an underutilization of this resource, even in mature bioeconomy markets. Several existing or perceived barriers can be attributed to the underdeveloped, forest-based bioeconomy in Australia. One of these is the limited understanding of feedstock supply costs. In this study, two ranking approaches were applied to identify the optimal biomass feedstock supply chain from field to conversion plant gate. A panel of experts embedded in the Australian bioeconomy were employed to first assign ranks to biomass supply chain items by cost intensity. Then, a layer of analytic hierarchical process (AHP) was used to weigh and rank various biomass supply pathways by efficiency. The results reveal that biomass extraction ranks the highest and biomass feedstock storage ranks the lowest, relative to other supply chain costs. Extracting and chipping material in the field attracted the most support from the experts in terms of efficiency, followed by transporting and chipping at the roadside and, finally, transporting and chipping at the conversion plant. This study provides insights for designers of the forest-based bioeconomy in Australia into relative cost drivers that may be applied to investment and industry decisions. It also provides a framework to support further investigations into forest biomass development and the management of biomass as a renewable carbon carrier at a time when Australia is transitioning from an energy policy focused on fossil fuels to a renewable energy strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call