Abstract
The strong configuration dependence of collective surface plasmon resonances in an array of metal nanoparticles provides an opportunity to develop a bioinspired tool for sensing mechanical deformations in soft matter at the nanoscale. We study the feasibility of a strain sensor based on an icosahedral array of nanoparticles encapsulated by a virus capsid. When the system undergoes deformation, the optical scattering cross-section spectra as well as the induced electric field profile change. By numerical simulations, we examine how these changes depend on the symmetry and extent of the deformation and on both the propagation direction and polarization of the incident radiation. Such a sensor could prove useful in studies of the mechanisms of nanoparticle or virus translocation in the confines of a host cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.