Abstract

Existing traffic monitoring approaches cannot completely cover all road segments in real-time, leading to massive amounts of missing traffic data, which limits the implementation of intelligent transportation systems. Most existing methods lack deep mining of the unique spatiotemporal characteristics of traffic flows, resulting in difficulty in application to urban traffic with complex topologies and variable states. In this paper, we propose a novel Spatio-Temporal constrained Low-Rank Tensor Completion (ST-LRTC) method, which adopts a manifold embedding approach to depict the local geometric structure of spatiotemporal domains. Specifically, under the low-rank assumption, the method introduces temporal constraints based on the continuity and periodicity of traffic flow and a spatial constraint matrix reflecting the traffic flow transmission mechanism. We embed low-dimensional spatiotemporal constraint matrices into the low-rank tensor completion solving process to fully utilize the global features and local spatiotemporal characteristics of the traffic tensor. Experiments were performed using traffic data from Xi’an, China, and the results indicated that ST-LRTC outperformed state-of-the-art methods under various missing rates and patterns. Thorough experiments have demonstrated that the incorporation of spatiotemporal analysis can enhance the adaptability of the tensor completion model to complex urban scenarios, which guarantees better monitoring, diagnosis, and optimization of urban traffic states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call