Abstract
Nurses regularly perform patient handling activities. These activities with awkward postures expose healthcare providers to a high risk of overexertion injury. The recognition of patient handling activities is the first step to reduce injury risk for caregivers. The current practice on workplace activity recognition is based on human observational approach, which is neither accurate nor projectable to a large population. In this paper, we aim at addressing these challenges. Our solution comprises a smart wearable device and a novel spatio-temporal warping (STW) pattern recognition framework. The wearable device, named Smart Insole 2.0, is equipped with a rich set of sensors and can provide an unobtrusive way to automatically capture the information of patient handling activities. The STW pattern recognition framework fully exploits the spatial and temporal characteristics of plantar pressure by calculating a novel warped spatio-temporal distance, to quantify the similarity for the purpose of activity recognition. To validate the effectiveness of our framework, we perform a pilot study with eight subjects, including eight common activities in a nursing room. The experimental results show the overall classification accuracy achieves 91.7%. Meanwhile, the qualitative profile and load level can also be classified with accuracies of 98.3% and 92.5%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Journal of Biomedical and Health Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.