Abstract
Deformation and fracture behaviors of Cu/Au and Cu/Cr multilayered composites with different length scales were investigated by using instrumented-indentation and three-point-bending methods. It is found that with decreasing the length scale (layer thickness and grain size), both multilayers tend to produce plastic instability via localized shear banding under indentation load in spite of high hardness they have, while quasi-brittle fracture under relatively low fracture stress prevails at three-point-bending test. Especially, the compressive flow stress and the tensile fracture stress exhibit inverse trend of variation with the length scales, which implies different mechanisms. Such length scale dependent deformation and plasticity were analyzed concerning size and interface effects under different stress state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.