Abstract

Active matter concerns itself with the study of particles that convert energy into work, typically motion of the particle itself. This field saw a surge of interest over the past decade, after the first micrometer-sized, man-made chemical motors were created. These particles served as a simple model system for studying in a well-controlled manner complex motion and cooperative behavior as known from biology. In addition, they have stimulated new efforts in understanding out-of-equilibrium statistical physics and started a revolution in microtechnology and robotics. Concentrated effort has gone into realizing these ambitions, and yet much remains unknown about the chemical motors themselves. The original designs for self-propelled particles relied on the conversion of the chemical energy of hydrogen peroxide into motion via catalytic decomposition taking place heterogeneously over the surface of the motor. This sets up gradients of chemical fields around the particle, which allow it to autophorese. That is, the interaction between the motor and the heterogeneously distributed solute species can drive fluid flow and the motor itself. There are two basic designs: the first relies on redox reactions taking place between the two sides of a bimetal, for example, a gold-platinum Janus sphere or nanorod. The second uses a catalytic layer of platinum inhomogeneously vapor-deposited onto a nonreactive particle. For convenience's sake, these can be referred to as redox motors and monometallic half-coated motors, respectively. To date, most researchers continue to rely on variations of these simple, yet elegant designs for their experiments. However, there is ongoing debate on the exact way chemical energy is transduced into motion in these motors. Many of the experimental observations on redox motors were successfully modeled via self-electrophoresis, while for half-coated motors there has been a strong focus on self-diffusiophoresis. Currently, there is mounting evidence that self-electrophoresis provides the dominant contribution to the observed speeds of half-coated motors, even if the vast majority of the reaction products are electroneutral. In this Account, we will summarize the most common electrophoretic propulsion model and discuss its strengths and weaknesses in relation to recent experiments. We will comment on the possible need to go beyond surface reactions and consider the entire medium as an "active fluid" that can create and annihilate charged species. This, together with confinement and collective effects, makes it difficult to gain a detailed understanding of these swimmers. The potentially dominant effect of confinement is highlighted on the basis of a recent study of an electro-osmotic pump that drives fluid along a substrate. Detailed analysis of this system allows for identification of the electro-osmotic driving mechanism, which is powered by micromolar salt concentrations. We will discuss how our latest numerical solver developments, based on the lattice Boltzmann method, should enable us to study collective behavior in systems comprised of these and other electrochemical motors in realistic environments. We conclude with an outlook on the future of modeling chemical motors that may facilitate the community's microtechnological ambitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call