Abstract

The early-life social environment has profound effects on brain development and subsequent expression of social behavior. Oxytocin and vasopressin are expressed and released in the brain and are important regulators of social behavior. Accordingly, the early social environment may alter social behaviors via changes in the oxytocin and/or vasopressin systems. To test this hypothesis, and to gain mechanistic insights, rodent models mimicking either a deprived (e.g. maternal separation) or enriched (e.g. neonatal handling) early social environment have been utilized. Findings indeed show that differences in the quality of the early social environment are associated with brain region-specific alterations in oxytocin and vasopressin expression and oxytocin receptor and vasopressin 1a receptor binding. Early social environment-induced changes in oxytocin and vasopressin systems were associated with changes in several forms of social behavior, including maternal care, aggression, play-fighting, and social recognition. First studies provide evidence for a causal link between altered vasopressin responsiveness and impairments in social recognition in rats exposed to maternal separation and a role for epigenetic mechanisms to explain persistent increases in vasopressin expression in mice exposed to maternal separation. Overall, initial findings suggest that oxytocin and vasopressin systems may mediate early social environment-induced alterations in social behavior. Additional comprehensive studies will be necessary to advance our understanding to what extent changes in oxytocin and vasopressin underlie early social environment-induced alterations in social behavior.This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call