Abstract

Touchless fingerprint recognition systems do not require contact of the finger with any acquisition surface and thus provide an increased level of hygiene, usability, and user acceptability of fingerprint-based biometric technologies. The most accurate touchless approaches compute 3-D models of the fingertip. However, a relevant drawback of these systems is that they usually require constrained and highly cooperative acquisition methods. We present a novel, fully touchless fingerprint recognition system based on the computation of 3-D models. It adopts an innovative and less-constrained acquisition setup compared with other previously reported 3-D systems, does not require contact with any surface or a finger placement guide, and simultaneously captures multiple images while the finger is moving. To compensate for possible differences in finger placement, we propose novel algorithms for computing 3-D models of the shape of a finger. Moreover, we present a new matching strategy based on the computation of multiple touch-compatible images. We evaluated different aspects of the biometric system: acceptability, usability, recognition performance, robustness to environmental conditions and finger misplacements, and compatibility and interoperability with touch-based technologies. The proposed system proved to be more acceptable and usable than touch-based techniques. Moreover, the system displayed satisfactory accuracy, achieving an equal error rate of 0.06% on a dataset of 2368 samples acquired in a single session and 0.22% on a dataset of 2368 samples acquired over the course of one year. The system was also robust to environmental conditions and to a wide range of finger rotations. The compatibility and interoperability with touch-based technologies was greater or comparable to those reported in public tests using commercial touchless devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call