Abstract

Ultracold organic chemistry enables studies of reaction dynamics and mechanisms in the quantum regime. Access to ultracold molecules hinges on the ability to efficiently scatter multiple photons via quasi-closed cycling transitions. Optical cycling in polyatomic molecules is challenging due to their complex electronic structure. Using equation-of-motion coupled-cluster calculations, we demonstrate that an alkaline earth metal attached to various aromatic ligands (such as benzene, phenol, cyclopentadienyl, and pyrrolide) offers nearly closed cycling transitions with only a few additional repump lasers. We also show that aromatic ligands such as benzene can accommodate multiple cycling centers in various geometrical arrangements, opening new avenues in quantum information science, precision measurements, and ultracold chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.