Abstract
AbstractIn a companion paper, the Multiscale Gravity Wave Model (MS-GWaM) has been introduced and its application to a global model as a transient subgrid-scale parameterization has been described. This paper focuses on the examination of intermittency of gravity waves (GWs) modeled by MS-GWaM. To introduce the variability and intermittency in wave sources, convective GW sources are formulated, using diabatic heating diagnosed by the convection parameterization, and they are coupled to MS-GWaM in addition to a flow-independent source in the extratropics accounting for GWs due neither to convection nor to orography. The probability density function (PDF) and Gini index for GW pseudomomentum fluxes are assessed to investigate the intermittency. Both are similar to those from observations in the lower stratosphere. The intermittency of GWs over tropical convection is quite high and is found not to change much in the vertical direction. In the extratropics, where nonconvective GWs dominate, the intermittency is lower than that in the tropics in the stratosphere and comparable to that in the mesosphere, exhibiting a gradual increase with altitude. The PDFs in these latitudes seem to be close to the lognormal distributions. Effects of transient GW–mean-flow interactions on the simulated GW intermittency are assessed by performing additional simulations using the steady-state assumption in the GW parameterization. The intermittency of parameterized GWs over tropical convection is found to be overestimated by the assumption, whereas in the extratropics it is largely underrepresented. Explanation and discussion of these effects are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.