Abstract

The patterns of linkage of chemical bonds in space contain significant energetic information that may be used as the basis of a theoretical approach to the structure and chemical composition of minerals. This approach combines aspects of graph theory, bond-valence theory, and the moments approach to the electronic-energy density-of-states to interpret topological aspects of crystal structures, and allows consideration of many issues of crystal structure, mineral composition, and mineral behavior that are not addressed by established theoretical methods. The chemical composition of a mineral is controlled by the weak interaction between the structural unit and the interstitial complex. The principle of correspondence of Lewis acidity-basicity asserts that stable structures will form when the Lewisbase strength of the structural unit closely matches the Lewis-acid strength of the interstitial complex. This principle allows analysis of the factors that control the chemical compositions and aspects of the structural arrangements of minerals, and provides a mechanism to understand the relations between structure, the speciation of its constituents in aqueous solution, and its mechanism of crystallization. (H2O) groups in the structural unit limit the polymerization of the structural unit in one or more directions, controlling the polymerization of the structural unit. This is a major cause of structural diversity in oxygen-based minerals, and accounts for the systematic distribution in mineral species from the core to the surface of the Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.