Abstract

The emergence of visible light communication (VLC) technology as a solution to solve radio frequency impediments, such as spectrum shortage, is continuously appealing. In addition to its large and unlicensed bandwidth, VLC provides a high level of security in a closed room with zero radio frequency interference. However, loss of the VLC signal is experienced when the receiver rotates or moves. This challenge requires a special solution for integration into portable devices. On the other hand, re-configurable intelligent surface (RIS) is a technology exploited in radio frequency to solve dead zones and loss of signal. RIS elements are characterized by tunable physico-chemical characteristics including physical depth and refractive index. In this article, we exploit these RIS attributes to steer the incident light beam, offer the VLC receiver a large range of rotation angle, and improve its field-of-view. We show that instead of using convex, parabolic, or spherical lenses, adopting a meta-lens with artificial muscles or a thin-film Liquid-Crystal with embedded Titanium dioxide nano-disk, a VLC receiver can detect light rays at a high incidence angle with high precision and considerable improvement in the detected light intensity, even with a miniaturized single photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.