Abstract

BackgroundBreast cancer is the most common type of invasive cancer in woman. It accounts for approximately 18% of all cancer deaths worldwide. It is well known that somatic mutation plays an essential role in cancer development. Hence, we propose that a prognostic prediction model that integrates somatic mutations with gene expression can improve survival prediction for cancer patients and also be able to reveal the genetic mutations associated with survival.MethodDifferential expression analysis was used to identify breast cancer related genes. Genetic algorithm (GA) and univariate Cox regression analysis were applied to filter out survival related genes. DAVID was used for enrichment analysis on somatic mutated gene set. The performance of survival predictors were assessed by Cox regression model and concordance index(C-index).ResultsWe investigated the genome-wide gene expression profile and somatic mutations of 1091 breast invasive carcinoma cases from The Cancer Genome Atlas (TCGA). We identified 118 genes with high hazard ratios as breast cancer survival risk gene candidates (log rank p < 0.0001 and c-index = 0.636). Multiple breast cancer survival related genes were found in this gene set, including FOXR2, FOXD1, MTNR1B and SDC1. Further genetic algorithm (GA) revealed an optimal gene set consisted of 88 genes with higher c-index (log rank p < 0.0001 and c-index = 0.656). We validated this gene set on an independent breast cancer data set and achieved a similar performance (log rank p < 0.0001 and c-index = 0.614). Moreover, we revealed 25 functional annotations, 15 gene ontology terms and 14 pathways that were significantly enriched in the genes that showed distinct mutation patterns in the different survival risk groups. These functional gene sets were used as new features for the survival prediction model. In particular, our results suggested that the Fanconi anemia pathway had an important role in breast cancer prognosis.ConclusionsOur study indicated that the expression levels of the gene signatures remain the effective indicators for breast cancer survival prediction. Combining the gene expression information with other types of features derived from somatic mutations can further improve the performance of survival prediction. The pathways that were associated with survival risk suggested by our study can be further investigated for improving cancer patient survival.

Highlights

  • Breast cancer is the most common type of invasive cancer in woman

  • Our study indicated that the expression levels of the gene signatures remain the effective indicators for breast cancer survival prediction

  • The pathways that were associated with survival risk suggested by our study can be further investigated for improving cancer patient survival

Read more

Summary

Introduction

Breast cancer is the most common type of invasive cancer in woman. It accounts for approximately 18% of all cancer deaths worldwide. The survival rate in HER2+ breast cancer patients [2] has been remarkably increased through targeted therapies including tyrosine kinase inhibitors. Adjuvant treatments such as chemotherapy improved the 5-year survival rate of the breast patients [3, 4]. An effective survival predictor, which is capable of helping cancer treatment and foreseeing the clinical outcomes, can improve life quality and lifespan of cancer patients. Better prognostic biomarkers of survival risk prediction are needed

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.