Abstract

The valorization of biomass via photocatalysis is an area of expanding research with advances in new technologies and materials with a view toward enhanced sustainability being reported. A significant challenge within this field, however, is understanding the impact photocatalysis has on more recalcitrant compounds present in biomass, such as lignin. Moreover, the current state of lignin model compound research is still largely focused on the breakdown of small models containing typically only one linkage. Described herein is the use of TiO2-mediated photocatalysis for the degradation of a representative hexameric lignin model compound which contains multiple linkages (e.g., 5-5′, β-5, and β-O-4). The results revealed that while cleavage of the β-5 and β-O-4 occurred, the 5-5′ appeared to remain intact within the identified reaction intermediates. To understand some of the more fundamental questions, a dimeric compound with a biphenyl linkage was synthesized and studied under photocatalytic conditions. The proposal of intermediates and pathways of degradation based on the studies conducted is presented and discussed herein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call