Abstract

In 3D, diffraction-free or Bessel beams are well known and have found applications in diverse fields. An analog in 2D, or pseudonondiffracting (PND) beams, is a nontrivial problem, and existing methods suffer from deficiencies. For example, Airy beams are not highly localized, some PND beams have significant side lobes, and a cosine beam has to be truncated by a very narrow aperture thus discarding most of the energy. We show, both theoretically and experimentally, that it is possible to generate a quasi-nondiffracting 2D light beam in a simple and efficient fashion. This is achieved by placing a mask consisting of a pair of double slits on a cylindrical lens. The applications include light sheet microscopy/optical sectioning and particle manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call