Abstract

We report the detailed computational study of flattening of the puckered Si5 ring by suppression of the pseudo-Jahn-Teller (PJT) effect through coordination of two Cl- anions to the molecule forming an inverse sandwich dianion [Si5Cl10·2Cl]2- complex. The PJT effect that causes nonplanarity of the Si5Cl10 structure (Cs) results from vibronic coupling of pairs of occupied molecular orbitals (OMOs) and unoccupied molecular orbitals (UMOs). It was shown that filling the intervenient molecular orbitals of puckered Si5Cl10 with valent electron pairs of Cl- donors suppresses the PJT effect, with the Si5 ring becoming planar (D5h) upon complex formation. In this paper, the stabilization energy E(2) associated with donor-acceptor charge transfer (delocalization) was estimated using NBO analysis for all studied inverse sandwich compounds [Si5Cl10·2X]2- (where X = F, Cl, Br). It was found that the polarizability of the donor ion might significantly affect the stabilization energy value and should be taken into account when choosing the ligands suitable for forming Si-based one-dimensional compounds and other nanoscale materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.