Abstract
AbstractThe ability to rapidly control and manipulate superconducting states is one of the great challenges of modern condensed matter physics. Circularly polarized radiation interacting with a superconducting condensate acts as an effective magnetic field that can generate supercurrents and DC magnetic moments through the inverse Faraday effect (IFE). Using the time‐dependent Ginzburg–Landau (TDGL) equation formalism, the current‐carrying states of a small superconducting ring illuminated by such radiation is calculated. Numerical simulations demonstrate the possibility to on‐demand switch between current‐carrying states in the superconductor by controlling the helicity of the electromagnetic field polarization. This result opens the way to all‐optical operation of superconducting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.