Abstract

The question of what happens when the heterotic SO(32) instanton becomes small was answered sometime back by Witten. The heterotic theory develops an enhanced Sp(2k) gauge symmetry for k small instantons, besides the allowed SO(32) gauge symmetry. An interesting question now is to ask what happens when we take the large k limit. In this paper we argue that in some special cases, where Gauss' law allows the large k limit, the dynamics of the large k small instantons can be captured by a dual gravitational description. For the cases that we elaborate in this paper, the gravity duals are non-Kahler manifolds although in general they could be non-geometric. These small instantons are heterotic five-branes and the duality allows us to study the strongly coupled field theories on these five-branes. We review and elaborate on some of the recent observations pointing towards this duality, and argue that in certain cases the gauge/gravity duality may be understood as small instanton transitions under which the instantons smoothen out and consequently lose the Sp(2k) gauge symmetry. This may explain how branes disappear on the dual side and are replaced by fluxes. We analyse the torsion classes before and after the transitions, and discuss briefly how the ADHM sigma model and related vector bundles could be studied for these scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.