Abstract

The columnar grains in additively manufactured alloys increase the tendency to form solidification cracks and cause anisotropy. Studying the effect of process parameters on microstructure development helps to guide the manufacturing of the equiaxed grain microstructure. First, the effect of process conditions on the melt pool dimensions using in situ synchrotron X‐ray imaging and thermal profile and solidification condition using finite element simulation and calculation of thermodynamics phase diagrams of CrMnFeCoNi high‐entropy alloy fabricated by directed energy deposition is studied. Increasing the laser power reduces the thermal gradient to solidification rate ratio, pushing the solidification closer to the columnar‐equiaxed transition. Nevertheless, the simulations still indicate the columnar microstructure for all scan conditions in contrast to the experimental observation that shows single‐wall samples built at 200 W consisted of dominantly equiaxed grains, whereas columnar grains are dominant in samples built at 100 W. It is believed that in addition to the effect of thermal gradient and solidification rate, the chemical segregation (Mn and Ni) during solidification may promote dendrite detachment, hence assisting the transition to equiaxed grains. The multitrack deposition results in more solid beneath a new melt pool, increasing the thermal gradient that promotes more columnar grains in comparison to single tracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.