Abstract

Cobalamins are of widespread importance in biology. Both of the cofactors essential for human metabolism, the organocobalamins coenzyme B12 and methylcobalamin, are highly photolabile, as are other alkylcobalamins. The alkynylcobalamin phenylethynylcobalamin (PhEtyCbl) and the arylcobalamin 4-ethylphenylcobalamin (EtPhCbl) with "atypical" Co-C-bonds to unsaturated carbons, were recently designed as metabolically inert cobalamins, classified as "antivitamins B12". The further development of an ideal light-activated or "conditional" antivitamin B12 would require it to be readily converted by light into an active B12 vitamin form. Very photolabile "antivitamins B12" would also represent particularly useful scaffolds for therapeutic light-activated reagents. Here, the photoactive arylcobalamin EtPhCbl and the remarkably photostable alkynylcobalamin PhEtyCbl are examined using femtosecond to picosecond UV-visible transient absorption spectroscopy. PhEtyCbl undergoes internal conversion to the ground state with near unit quantum yield on a time scale < 100 ps and an activation energy of 12.6 ± 1.4 kJ/mol. The arylcobalamin EtPhCbl forms an excited state with a ca. 247 ps lifetime. This excited state branches between internal conversion to the ground state and formation of a long-lived base-off species with a quantum yield of ∼9%. Anaerobic steady state photolysis of "light-sensitive" EtPhCbl results in the formation of cob(II)alamin, but only with quantum yield <1%. Hence, our studies suggest that suitably modified arylcobalamins may be a rational basis for the design of photoresponsive "antivitamins B12".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.