Abstract
The controlled synthesis of subnanometer-sized metal clusters (MCs) presents a fascinating prospect for the research of size-dependent properties. In this study, a facile approach by employing porous racemic organic cage crystals as supports for immobilizing a broad range of noble MCs (e.g., Ru, Ir, Rh) is reported. Downsizing the support to the nanoscale leads to resultant MCs with precisely controlled sizes <0.7nm. Such enhanced stabilization ability is a result of enhanced metal-support interactions as well as the nanoconfinement of organic cages in controlling the growth of MCs. Moreover, the obtained MCs display excellent catalytic performance in a series of liquid-phase reactions owing to a decrease in the diffusion resistance from the substrate to MCs immobilized by the nano-sized cage support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.