Abstract

To develop a novel system for patient-specific combined optimization of couch, collimator, and gantry angles for use in volumetric modulated arc therapy (VMAT) treatment planning. The system was designed to produce highly compact dose distributions by extensively sampling the 4π space. Automated fixed couch trajectory planning was used to reduce normal tissue doses by avoiding beams-eye-view (BEV) overlap with organs-at-risk (OARs) and improve monitor unit (MU) efficiency through collimator angle optimization. By merging distinct BEV objective functions used to optimize the couch rotation angle and collimator angle, a three-dimensional (3D) cost space (the CODA cube) was constructed with axes of gantry, couch, and collimator rotation angles. At each voxel in this CODA cube, the cost of implementing this combination of axes positions in fixed couch trajectories was quantified. The CODA cube was sampled and explored using a modified constrained Bellman-Ford algorithm to suggest low-cost fixed candidate arcs on each plane of the space, from which 10-arcs are chosen throughout the 3D space using a k-means clustering algorithm. These fixed couch trajectories were then imported into the Eclipse treatment planning system (v.11) and inverse-optimized according to clinical standards. Eight artificial cranial targets were contoured in a test-patient anatomy, and seven treatment plans were generated from combinations of three and four targets. The CODA cube optimized plans were compared to standard 4-arc VMAT plans for cranial stereotactic radiotherapy/surgery that were optimized for the same sets of targets; maximum dose to each OAR, V12Gy to normal brain, conformity, and total MUs were compared. Both planning methods were inverse-optimized with identical dosimetric objectives. CODA plans resulted in a reduction in maximum dose to OARs of 20.6% (P<0.01), with maximum brainstem dose decreased by 2.63Gy (P=0.031) on average when compared to the standard arc arrangement. The mean reduction in total MU was 8.6% (P=0.156), the mean increase in the inverse of the van't Riet conformation number was 0.1%, (P=0.67) and the mean decrease in normal brain tissue receiving 12Gy or higher was 3.9% (P=0.16), when compared to the standard VMAT arc configuration (n=7). The optimization of couch, collimator, and gantry angles simultaneously using a 3D optimization space achieved improvement on multiple clinical metrics when compared to the standard VMAT arc configuration. A statistically significant sparing to OAR maximum doses was seen. Combining these optimizations may yield superior results to independent optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call