Abstract
In many real world contexts, successful human-AI collaboration requires humans to productively integrate complementary sources of information into AI-informed decisions. However, in practice human decision-makers often lack understanding of what information an AI model has access to, in relation to themselves. There are few available guidelines regarding how to effectively communicate aboutunobservables: features that may influence the outcome, but which are unavailable to the model. In this work, we conducted an online experiment to understand whether and how explicitly communicating potentially relevant unobservables influences how people integrate model outputs and unobservables when making predictions. Our findings indicate that presenting prompts about unobservables can change how humans integrate model outputs and unobservables, but do not necessarily lead to improved performance. Furthermore, the impacts of these prompts can vary depending on decision-makers' prior domain expertise. We conclude by discussing implications for future research and design of AI-based decision support tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.