Abstract

AbstractWith the aim of curbing air pollution and addressing climate change, the use of low density thermoplastic elastomers (TPEs) in transportation could be a useful way to lighten the vehicle weight. For that, melt blending of high performance rubber and thermoplastics is an attractive way of preparing high performance TPEs. In this work, several TPEs have been prepared by melt blending of hydrogenated acrylonitrile butadiene rubber (HNBR) with polyamide 6 (PA6), adding different amounts of carboxylated HNBR (XHNBR) as compatibilizer: 40/60/0, 40/42/18, 40/30/30 and 40/18/42 (PA6/HNBR/XHNBR). The resulting blends were investigated using melt rheological measurements, morphological observations (scanning electron microscopy and polarized optical microscopy), dynamic mechanical analysis, differential scanning calorimetry analysis and mechanical tests. A biphasic morphology was noted for all TPEs. An increase in XHNBR amount changes the morphology from dispersed to co‐continuous. This evolution is explained by the change in the melt rheological properties of the HNBR/XHNBR rubber phase. Moreover, the introduction of 42% XHNBR resulted in an increase in the glass transition temperature of both rubber and PA6 phases. This double Tg increase phenomenon was attributed to the interfacial interactions between the carboxyl groups in XHNBR and the amine end groups in PA6. Additionally, thermal analysis revealed a reduced crystallinity of PA6 in the blend, which corresponds to enhanced interfacial interactions. The interfacial adhesion and the co‐continuous morphology resulted in an improved ductility. This study reveals the possibility of obtaining TPE blends with tunable thermal and mechanical properties by controlling both interfacial interactions and morphology. © 2019 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call