Abstract

The inverse of magnetic resonance imaging is used to develop a simple approach to super-resolution lithography that can write arbitrary patterns with high contrast. In this approach a thin layer of material that exhibits optically detected magnetic resonance (ODMR) is used to transfer 2D spatial information that has been encoded in spin sublevel populations of the ODMR material into an optical emission pattern that can expose photoresist. To create the pattern in spin sublevels, coherent excitation is performed using either microwave or radiofrequency fields in the presence of a controllable magnetic field gradient. To better illustrate the technique, a simulation is presented based on nitrogenvacancy (NV) color centers in diamond which is a popular room temperature ODMR material. In this simulation it is shown how a simple 2D pattern can be written using predefined optical and microwave pulses. The advantage to using this comparatively simple approach to super-resolution lithography is that more emphasis can be on solving the practical implementation issues rather than just striving to demonstrate the basic physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.