Abstract

Deciphering cellular responses to genetic perturbations is fundamental for a wide array of biomedical applications. However, there are three main challenges: predicting single-genetic-perturbation outcomes, predicting multiple-genetic-perturbation outcomes and predicting genetic outcomes across cell lines. Here we introduce Subtask Decomposition Modeling for Genetic Perturbation Prediction (STAMP), a flexible artificial intelligence strategy for genetic perturbation outcome prediction and downstream applications. STAMP formulates genetic perturbation prediction as a subtask decomposition problem by resolving three progressive subtasks in a problem decomposition manner, that is, identifying postperturbation differentially expressed genes, determining the expression change directions of differentially expressed genes and finally estimating the magnitudes of gene expression changes. STAMP exhibits a substantial improvement over the existing approaches on three subtasks and beyond, including the ability to identify key regulatory genes and pathways on small samples and to reveal precise genetic interactions of diverse types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.