Abstract

A space-time coding metasurface (STCM) operating in the sub-terahertz band to construct new-architecture wireless communication systems is proposed. Specifically, a programmable STCM is designed with varactor-diode-tuned metasurface elements, enabling precise regulation of harmonic amplitudes and phases by adjusting the time delay and duty cycle of square-wave modulation signal loaded on the varactor diodes. Independent electromagnetic (EM) regulations in the space and time domains are achieved by STCM to realize flexible beam manipulations and information modulations. Based on these features, a sub-terahertz wireless communication link is constructed by employing STCM as a transmitter. Experimental results demonstrate that the STCM supports multiple modulation schemes including frequency-shift keying, phase-shift keying, and quadrature amplitude modulations in a wide frequency band. It is also shown that the STCM is capable of realizing wide-angle beam scanning in the range of ±45o , which offers an opportunity for user tracking during the communication. Thus, the STCM transmitter with high device density and low power consumption can provide low-complexity, low-cost, low-power, and low-heat solutions for building the next-generation wireless communication systems in the sub-terahertz frequency and even terahertz band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.