Abstract

Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials <svg style="vertical-align:-2.3205pt;width:52.037498px;" id="M1" height="19.0875" version="1.1" viewBox="0 0 52.037498 19.0875" width="52.037498" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.137)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,5.944,16.137)"><path id="x1D438" d="M609 650l-19 -162l-30 -2q2 69 -14 94q-9 18 -28.5 26t-74.5 8h-88q-30 0 -37 -6.5t-12 -36.5l-41 -212h103q48 0 69 5.5t32 19t26 50.5h29l-40 -198h-30q2 58 -11.5 70.5t-85.5 12.5h-99l-30 -167q-17 -87 3 -101q18 -15 111 -15q59 0 89 7t54 27q8 7 15.5 16t16 21.5&#xA;l14 20.5t15 23.5t13.5 21.5l29 -10q-52 -129 -71 -163h-500l6 28q66 4 83 17.5t28 73.5l77 409q11 61 -0.5 75.5t-78.5 18.5l10 28h467z" /></g> <g transform="matrix(.012,-0,0,-.012,16.688,7.975)"><path id="x53" d="M409 504l-29 -5q-16 60 -44.5 96t-86.5 36q-54 0 -82.5 -32t-28.5 -77q0 -51 30.5 -82.5t96.5 -65.5l35.5 -18t33 -19.5t33.5 -23.5l27 -25.5t24.5 -32t13.5 -36.5t6 -45q0 -80 -62 -134.5t-160 -54.5q-47 0 -98 15q-22 7 -50 21q-8 23 -27 155l30 7q7 -27 18 -52&#xA;t30 -51.5t49 -42.5t67 -16q56 0 88 32.5t32 87.5q0 51 -31.5 82t-98.5 67q-80 44 -110 73q-55 53 -55 124q0 75 56 126.5t150 51.5q53 0 126 -23z" /></g><g transform="matrix(.012,-0,0,-.012,22.328,7.975)"><path id="x41" d="M673 0h-245v28q47 6 58 16t1 39l-55 154h-213q-31 -87 -36 -129q-16 -47 -5 -61t68 -19v-28h-226v28q50 7 68.5 23.5t43.5 80.5l214 524l24 9l193 -536q23 -63 41.5 -79.5t68.5 -21.5v-28zM418 280l-81 255h-2q-74 -197 -101 -255h184z" /></g><g transform="matrix(.012,-0,0,-.012,30.55,7.975)"><use xlink:href="#x41"/></g><g transform="matrix(.012,-0,0,-.012,38.772,7.975)"><path id="x50" d="M46 650h247q112 0 169 -41q64 -49 64 -141q0 -91 -56.5 -143t-138.5 -62q-23 -3 -45 -1l-74 19v-157q0 -63 15.5 -77t83.5 -19v-28h-271v28q60 5 74 20t14 77v400q0 65 -12.5 79t-69.5 18v28zM212 559v-245q31 -12 73 -12q59 0 102 38t43 124q0 77 -42.5 115.5&#xA;t-108.5 38.5q-44 0 -56 -12q-11 -8 -11 -47z" /></g> <g transform="matrix(.017,-0,0,-.017,46.088,16.137)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> and electrostatic <svg style="vertical-align:-2.3205pt;width:35.650002px;" id="M2" height="19.0875" version="1.1" viewBox="0 0 35.650002 19.0875" width="35.650002" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.137)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,5.944,16.137)"><use xlink:href="#x1D438"/></g> <g transform="matrix(.012,-0,0,-.012,16.688,7.975)"><path id="x45" d="M517 162l29 -4q-18 -100 -35 -158h-482v28q68 5 83.5 20t15.5 77v398q0 66 -13 80t-73 19v28h446q0 -8 8 -144l-29 -4q-11 51 -32 85q-11 17 -35 23t-78 6h-76q-23 0 -28 -5t-5 -27v-228h94q67 0 83 12t25 63h29v-191h-29q-10 54 -26 65.5t-81 11.5h-95v-189&#xA;q0 -65 24 -81q19 -13 104 -13q57 0 83 7t43 27q28 33 50 94z" /></g><g transform="matrix(.012,-0,0,-.012,23.446,7.975)"><use xlink:href="#x53"/></g> <g transform="matrix(.017,-0,0,-.017,29.713,16.137)"><use xlink:href="#x29"/></g> </svg> and Lennard-Jones <svg style="vertical-align:-2.3205pt;width:33.575001px;" id="M3" height="18.9125" version="1.1" viewBox="0 0 33.575001 18.9125" width="33.575001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.95)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,5.944,15.95)"><use xlink:href="#x1D438"/></g> <g transform="matrix(.012,-0,0,-.012,16.688,7.8)"><path id="x4C" d="M495 163l30 -6q-19 -99 -36 -157h-453v28q63 5 77.5 20t14.5 78v400q0 63 -13 77t-75 19v28h261v-28q-61 -5 -74.5 -19t-13.5 -77v-395q0 -41 5 -59t18 -25q24 -13 96 -13q85 0 112 31q30 33 51 98z" /></g><g transform="matrix(.012,-0,0,-.012,23.089,7.8)"><path id="x4A" d="M303 650v-28q-58 -5 -71.5 -19.5t-13.5 -77.5v-373q0 -99 -18.5 -156.5t-67.5 -102.5q-49 -44 -93 -58l-12 29q78 38 96 130q10 60 10 191v340q0 63 -14 77.5t-75 19.5v28h259z" /></g> <g transform="matrix(.017,-0,0,-.017,27.625,15.95)"><use xlink:href="#x29"/></g> </svg> potentials between the amino acid units. In this study, the SAAP force field (SAAPFF) parameters were improved, and classical canonical Monte Carlo (MC) simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300&#x2009;K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by <i >ab initio</i> calculation or simply by the number of the hydrogen bonds (or the hardness) was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

Highlights

  • In conformational analysis of short peptides, Monte Carlo (MC) and molecular dynamics (MD) simulation techniques have been widely applied [1, 2], in which a set of potential energy functions, such as ECEPP [3, 4], AMBER [5,6,7,8], CHARMM [9], OPLS [10, 11], and GROMOS [12], is employed to define the relation between the structure and the potential energy

  • The values of these energetic terms were maintained stable during the single amino acid potential (SAAP)-MC simulation with large fluctuation for ESAAP and ELJ, while the value of EES was almost zero, as observed previously [34]: the large dielectric constant of water would make the electrostatic interaction between the amino acid residues ignorable

  • The value of rY1⋅⋅⋅M5 dispersed in a range from 5 to 12 Ain the SAAP-MC simulation, while those converged at around 6 Ain the AMBER-MD simulation (Figure 3)

Read more

Summary

Introduction

In conformational analysis of short peptides, Monte Carlo (MC) and molecular dynamics (MD) simulation techniques have been widely applied [1, 2], in which a set of potential energy functions (a so-called force field), such as ECEPP [3, 4], AMBER [5,6,7,8], CHARMM [9], OPLS [10, 11], and GROMOS [12], is employed to define the relation between the structure and the potential energy. Various types of coarse-grained force fields, such as AMBER-UA [18], UNRES [19,20,21,22,23], and MARTINI [24, 25], have been developed in order to reduce time to compute the potential energy. Physicochemical implications of this unexpected similarity are not yet clear, the finding strongly suggests prominent importance of SAAP as a determinant of protein structures. This point would be supported by the previous experimental result by Dobson and coworkers [29, 30] that φ and ψ dihedral angle distributions of individual amino acid residues

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call