Abstract

In the current era of biological big data, which are rapidly populating the biological chemical space, in silico polypharmacology drug design approaches help to decode structure-multiple activity relationships (SMARts). Current computational methods can predict or categorize multiple properties simultaneously, which aids the generation, identification, curation, prioritization, optimization, and repurposing of molecules. Computational methods have generated opportunities and challenges in medicinal chemistry, pharmacology, food chemistry, toxicology, bioinformatics, and chemoinformatics. It is anticipated that computer-guided SMARts could contribute to the full automatization of drug design and drug repurposing campaigns, facilitating the prediction of new biological targets, side and off-target effects, and drug-drug interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.