Abstract

Light helicopters are used for a variety of applications, attracting users from private and public market segments because of their agility and convenient storage capabilities. However, most light helicopters on the market today are designed and manufactured with technologies dating back to the 1980s, with safety issues to be addressed by advanced design methods, more powerful engines, and innovative solutions. In this regard, the DISRUPT (Development of an innovative and safe ultralight, two-seater turbine helicopter) project, led by Curti Aerospace Division (Italy) and co-funded by the EU H2020 program, is a state-of-the-art concept for a novel ultralight helicopter equipped with a ballistic parachute. In order to validate the first parachute ejection in a safe scenario, a dronization process was selected as a viable solution to be performed in collaboration with the University of Bologna. In the present paper, the steps followed to transform the helicopter into an unmanned vehicle are detailed according to the model-based design approach, with particular focus on mathematical modeling, control system design, and experimental validation. Obtained results demonstrate the feasibility of using a civil helicopter first as a remotely-piloted vehicle and then as a highly-automated personal transportation system in the framework of smart and sustainable air mobility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.