Abstract

Due to complex traffic conditions, transition areas in highway work zones are associated with a higher crash risk than other highway areas. Understanding risk-contributing features in transition areas is essential for ensuring traffic safety on highways. However, conventional surrogate safety measures (SSMs) are quite limited in identifying the crash risk in transition areas due to the complex traffic environment. To this end, this study proposes an improved safety potential field, named the Work-Zone Crash Risk Field (WCRF). The WCRF force can be used to measure the crash risk of individual vehicles that enter a work zone considering the influence of multiple features, upon which the overall crash risk of the road segment in a specific time window can be estimated. With the overall crash risk used as a label, the time-window-based traffic data are used to train and validate an eXtreme Gradient Boosting (XGBoost) classifier, and the Shapley Additive Explanations (SHAP) method is integrated with the XGBoost classifier to identify the key risk-contributing traffic features. To assess the proposed approach, a case study is conducted using real-time vehicle trajectory data collected in two work zones along a highway in China. The results demonstrate that the WCRF-based SSM outperforms conventional SSMs in identifying crash risks in work zone transition areas on highways. In addition, we perform lane-based analysis regarding the impact of setting up work zones on highway safety and investigate the heterogeneity in risk-contributing features across different work zones. Several interesting findings from the analysis are reported in this paper. Compared to existing SSMs, the WCRF-based SSM offers a more practical and comprehensive way to describe the crash risk in work zones. The approach using the developed WCRF technique offers improved capabilities in identifying key risk-contributing features, which is expected to facilitate the development of safety management strategies for work zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.