Abstract

Rust fungi (Basidiomycota, Uredinales) consist of more than 7000 species of obligate plant pathogens that possess some of the most complex life cycles in the Eumycota. Traditionally, a limited number of synapomorphic characters and incomplete life-cycle and host-specificity data have hampered phylogenetic inference within the Uredinales. The application of modern molecular characters to rust systematics has been limited, and current contradictions, especially in the deeper nodes, have not yet been resolved. In this study, two nuclear rDNA genes (18S and 28S) were examined across the breadth of the Uredinales to resolve some systematic conflicts and provide a framework for further studies of the group. Three suborders of rusts are recovered. Of the 13 rust families most widely accepted, 8 are supported in full or in part (Coleosporiaceae, Melampsoraceae, Mikronegeriaceae, Phakopsoraceae p.p., Phragmidiaceae, Pileolariaceae, Pucciniaceae, Raveneliaceae), 3 are redundant (Cronartiaceae, Pucciniastraceae, Pucciniosiraceae), and the status of 2 (Chaconiaceae, Uropyxidaceae) could not be resolved. The Mikronegeriaceae and Caeoma torreyae are the most basal rusts sampled. It is concluded that morphology alone is a poor predictor of rust relationships at most levels. Host selection, on the other hand, has played a significant role in rust evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.