Abstract

Polyethyleneterephthalate track-etched membranes with a pore diameter of 650nm were functionalized via surface-initiated atom transfer radical polymerization with grafted poly(2-hydroxyethylmethacrylate). Grafted chain length and density were varied. Superparamagnetic nanoparticles (Fe3O4; core diameter 15nm) were selectively covalently coupled to the end groups of the grafted chains. The membranes were characterized by grafting degree, X-ray photoelectron spectroscopy, electron microscopy, zeta potential and pore size in dry state via gas flow/pore dewetting permporometry. The results confirmed that all functionalization steps were well controlled. Water permeability measurements allowed estimation of the hydrodynamic pore diameter of the membranes, and, hence, the hydrodynamic polymer layer thickness on the pore walls. The water permeability of the nanoparticle hybrid membranes was then measured in a static or an alternating external magnetic field. Significant and reversible decreases of permeability were observed, with the largest effects for membranes with high polymer grafting density and long polymer chains (hydrodynamic layer thickness up to 100nm). The maximum change in effective pore diameter was only 6%. However, the estimated change of swollen polymer layer thickness (originally between 60 and 100nm) was up to 13nm. The functionality of the membranes can be tuned by variations of straightforward parameters such as pore size or grafted chain lengths. The study is also relevant as a model system for altering the effective thickness of grafted polymer layers on a surface by an external magnetic field for other applications, for instance in microfluidic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.