Abstract

Abstract Reducing the formation temperature of single-phase multioxides is one of the classic challenges in ceramic processing, including wet-chemical synthesis routes. Toward pursuing this aim for diopside (MgCaSi 2 O 6 ), the merit of different sol-gel and coprecipitation processes using the related chloride precursors followed by calcination was compared from the viewpoints of crystallinity and homogeneity. In accordance to the results, the use of the sol-gel techniques, directed with/without an alkaline catalyst, gave rise to the unfavorable creation of multiphase and low-crystallinity structures. Regarding the coprecipitation methods, the one-step addition of a precipitant agent is accompanied by an indirect low-temperature formation of nano-diopside, while a direct crystallization into this phase was explored in the dropwise condition, albeit with a lower crystallinity. Thus, by employing a suitable synthesis processing, it is feasible to take control of a wide range of nanoparticulate diopside-based structures achieved after a low-temperature calcination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.