Abstract
This work proposes a new approach based on a suit combination of mathematical morphology and similarity criteria techniques to classify long-period and volcano-tectonic seismic events of the Cotopaxi volcano. The proposed method explores the seismic signal domain to compute a new feature space based on the edges map of the seismic events pattern represented in the gray-level spectrogram images, which is used to feed a set of similarity-based classifiers. The <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L_{2}$ </tex-math></inline-formula> -norm was selected as the best metric to be implemented by the proposed method. In terms of classification performance, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L_{2}$ </tex-math></inline-formula> -norm was statistically superior in the D1 data set (seismic events with overlapped signals of nonvolcanic origin) and similar in the D2 data set (events without overlapped signals) with respect to the other metrics, reaching accuracy mean scores of 93.34% and 96.88%, respectively. These results demonstrated that the computed edges map feature space is a better environment for separating both seismic events compared with the original gray-level space. Regarding the execution time, total time (TT) and time per-sample (TS) did not exceed 0.388 and 0.002 s during the training stage, respectively. During the testing stage, a TS of no more than 0.012 s was achieved. Finally, its execution time is faster, and the algorithm complexity is lower compared with the state-of-the-art methods, which makes it a practical and beneficial scheme to implement for real-time seismic events’ classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.