Abstract

The kinetics of the fast reversible carbamate formation reaction of CO(2)(aq) with a series of substituted cyclic secondary amines as well as the noncyclic secondary amine diethanolamine (DEA) has been investigated using the stopped-flow spectrophotometric technique at 25.0 °C. The kinetics of the slow parallel reversible reaction between HCO(3)(-) and amine has also been determined for a number of the amines by (1)H NMR spectroscopy at 25.0 °C. The rate of the reversible reactions and the equilibrium constants for the formation of carbamic acid/carbamate from the reactions of CO(2) and HCO(3)(-) with the amines are reported. In terms of the forward reaction of CO(2)(aq) with amine, the order with increasing rate constants is as follows: diethanolamine (DEA) < morpholine (MORP) ~ thiomorpholine (TMORP) < N-methylpiperazine (N-MPIPZ) < 4-piperidinemethanol (4-PIPDM) ~ piperidine (PIPD) < pyrrolidine (PYR). Both 2-piperidinemethanol (2-PIPDM) and 2-piperidineethanol (2-PIPDE) do not form carbamates. For the carbamate forming amines a Brønsted correlation relating the protonation constant of the amine to the carbamic acid formation rate and equilibrium constants at 25.0 °C has been established. The overall suitability of an amine for PCC in terms of kinetics and energy is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call