Abstract

Motivated by information-theoretic security, link signature (LS)-based security mechanisms exploit the ample channel characteristics between wireless devices for security establishment. Nevertheless, LS is originated from wireless environments and hence may exhibit potential vulnerabilities that can be exploited by adversary in the vicinity. As to this, it is widely believed in existing literature on LS that, a half-wavelength guard zone is sufficient to decorrelate the adversary channel from the legitimate one and thereby secures the legitimate LS. However, such an assumption may not hold universally—in some environments, high channel correlations have been observed for much larger spatial separations. Considering this, a comprehensive understanding of channel correlation in different wireless environments is needed for more confident deployment of LS-based security mechanisms. To this end, various well-established channel correlation models are investigated in this work. A set of important physical factors that have significant influence on LS security are identified, and with the obtained insights, extensive simulations are conducted to explore suitable guard zone sizes for LS in several typical indoor and outdoor environments. Experimental results based on universal software radio peripheral (USRP) platforms and GNURadio are also presented to further support the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.