Abstract
The conventional definition of asphaltenes is based on their solubility in toluene and their insolubility in heptane. We have utilized this definition to study the influence of partial charge parametrization on the aggregation behavior of asphaltenes using classical atomistic molecular dynamics simulations performed on the microsecond time scale. Under consideration here are toluene- and heptane-based systems with different partial charges parametrized using the general AMBER force field (GAFF). Systems with standard GAFF partial charges calculated by the AM1-BCC and HF/6-31G*(RESP) methods were simulated alongside systems without partial charges. The partial charges implemented differ in terms of the resulting electrical negativity of the asphaltene polyaromatic core, with the AM1-BCC method giving the greatest magnitude of the total core charge. Based on our analysis of the molecular relaxation and orientation, and on the aggregation behavior of asphaltenes in toluene and heptane, we proposed to use the partial charges obtained by the AM1-BCC method for the study of asphaltene aggregates. A good agreement with available experimental data was observed on the sizes of the aggregates, their fractal dimensions, and the solvent entrainment for the model asphaltenes in toluene and heptane. From the results obtained, we conclude that for a better predictive ability, simulation parameters must be carefully chosen, with particular attention paid to the partial charges owing to their influence on the electrical negativity of the asphaltene core and on the asphaltenes aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.