Abstract

BackgroundDespite the World Health Organization listing methadone as an essential medication, effective dose selection is challenging, especially in racial and ethnic minority populations. Subtherapeutic doses can result in withdrawal symptoms while supratherapeutic doses can result in overdose and death. Although CYP3A4 was conventionally considered the principal methadone metabolizing enzyme, more recent data have identified CYP2B6 as the principal enzyme. CYP2B6 has ethnically-associated polymorphisms that affect the metabolic rate. Our objective was to investigate the effects of genetic and nongenetic factors on methadone metabolism.MethodsWe measured trough plasma methadone levels in 100 participants with opioid use disorder. We assessed methadone metabolism by calculating the metabolite ratio (major metabolite: 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine [EDDP] divided by methadone concentration). We assessed hepatic fibrosis and steatosis by transient elastography and CYP2B6 alleles, principally responsible for methadone metabolism. Mixed effects models modeled the data in 97 participants.ResultsParticipants were largely male (58%), minority (61% African American) and non-Hispanic (68%). Forty percent were HCV mono-infected, 40% were uninfected, and 20% were HCV/HIV co-infected. Female sex had significant effects on (R)- and (S)-methadone metabolism (p = 0.016 and p = 0.044, respectively). CYP2B6 loss of function (LOF) alleles significantly affected (S)-methadone metabolism (p = 0.012). Body mass index (BMI) significantly affected (R)-methadone metabolism (p = 0.034). Methadone metabolism appeared to be lower in males, in individuals with LOF alleles, and elevated BMI.ConclusionsGenetic analysis, especially in minority populations, is essential to delivering individualized treatments. Although the principal methadone metabolizing enzyme remains controversial, our results suggest that sex, CYP2B6 genotype, and BMI should be incorporated into multivariate models to create methadone dosing algorithms. Methadone dosing algorithms should facilitate medication delivery, improve patient satisfaction, and diminish overdose potential.

Highlights

  • Since the 1960s, medication-assisted treatment has been the standard therapy for opioid use disorder (OUD) [1]

  • The principal methadone metabolizing enzyme remains controversial, our results suggest that sex, cytochrome P4502B6 (CYP2B6) genotype, and Body mass index (BMI) should be incorporated into multivariate models to create methadone dosing algorithms

  • We investigated the relationships between methadone metabolism and hepatic fibrosis stage as well as the degree of steatosis

Read more

Summary

Introduction

Since the 1960s, medication-assisted treatment has been the standard therapy for opioid use disorder (OUD) [1]. A synthetic opioid, blocks the euphoric effects of opioids while relieving physiological cravings and alleviating withdrawal symptoms. Methadone overdoses may lead to toxicity and death; subtherapeutic doses may potentiate withdrawal and necessitate ongoing opioid use in order to minimize breakthrough withdrawal symptoms. Persistent withdrawal symptoms (e.g., nausea) can lead to ongoing illicit opioid use in conjunction with methadone, which can result in death. Therapeutic dosing of methadone requires low dose initiation, careful dose titration, and diligent monitoring for signs of withdrawal or overdose [2,3,4]. Despite the World Health Organization listing methadone as an essential medication, effective dose selection is challenging, especially in racial and ethnic minority populations. Subtherapeutic doses can result in withdrawal symptoms while supratherapeutic doses can result in overdose and death. Our objective was to investigate the effects of genetic and nongenetic factors on methadone metabolism

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call