Abstract

Motivations Short-read accuracy is important for downstream analyses such as genome assembly and hybrid long-read correction. Despite much work on short-read correction, present-day correctors either do not scale well on large data sets or consider reads as mere suites of k-mers, without taking into account their full-length read information. Results We propose a new method to correct short reads using de Bruijn graphs, and implement it as a tool called Bcool. As a first step, Bcool constructs a compacted de Bruijn graph from the reads. This graph is filtered on the basis of k-mer abundance then of unitig abundance, thereby removing from most sequencing errors. The cleaned graph is then used as a reference on which the reads are mapped to correct them. We show that this approach yields more accurate reads than k-mer-spectrum correctors while being scalable to human-size genomic datasets and beyond. Availability and Implementation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.