Abstract

Brain-computer interfaces for augmentative and alternative communication (BCI-AAC) may help overcome physical barriers to AAC access. Traditionally, visually based P300–BCI-AAC displays utilize a symmetrical grid layout. Contextual scene displays are composed of context-rich images (e.g., photographs) and may support AAC success. However, contextual scene displays contrast starkly with the standard P300-grid approach. Understanding the neurological processes from which BCI-AAC devices function is crucial to human-centered computing for BCI-AAC. Therefore, the aim of this multidisciplinary investigation is to provide an initial exploration of contextual scene use for BCI-AAC. Methods: Participants completed three experimental conditions to evaluate the effects of item arrangement asymmetry and context on P300-based BCI-AAC signals and offline BCI-AAC accuracy, including 1) the full contextual scene condition, 2) asymmetrical item arraignment without context condition and 3) the grid condition. Following each condition, participants completed task-evaluation ratings (e.g., engagement). Offline BCI-AAC accuracy for each condition was evaluated using cross-validation. Results: Display asymmetry significantly decreased P300 latency in the centro-parietal cluster. P300 amplitudes in the frontal cluster were decreased, though nonsignificantly. Display context significantly increased N170 amplitudes in the occipital cluster, and N400 amplitudes in the centro-parietal and occipital clusters. Scenes were rated as more visually appealing and engaging, and offline BCI-AAC performance for the scene condition was not statistically different from the grid standard. Conclusion: Findings support the feasibility of incorporating scene-based displays for P300–BCI-AAC development to help provide communication for individuals with minimal or emerging language and literacy skills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call