Abstract

In this paper, we investigate the transmission schemes of space data systems for optimized network capacity in an integrated terrestrial-satellite network (ITSN) with a two-layered space segment. First, a theoretical model of the network capacity is developed to evaluate the strategy of utilizing both direct and relayed transmissions. Second, we consider the ideal and the resource-constrained scenarios in which the corresponding network capacity is modeled with respect to the scheduling scheme. In particular, closed form and semi-closed form solutions to difficult integer programs are achieved via rigorous mathematical analysis. The proposed model is general for exploring the capacity of various satellite network deployments whose solutions have not been obtained in prior studies. Furthermore, we verify the potential capacity of the different transmission schemes based on the proposed solutions and prove that the system's network capacity can be significantly improved by the hybrid transmission scheme. The theoretical framework proposed in this paper is expected to provide constructive insights in the design for the future space segments of ITSNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.